
White Paper Report

Report ID: 104101

Application Number: HD5147211

Project Director: Geraldine Heng (heng@mail.utexas.edu)

Institution: University of Texas, Austin

Reporting Period: 9/1/2011-8/31/2012

Report Due: 11/30/2012

Date Submitted: 11/30/2012

 	

White Paper: Bibliopedia, Drupal as a
Web Application Framework, and the

Semantic Web

Geraldine Heng, Michael Widner, and Jason Yandell
The University of Texas at Austin

November 30, 2012

 	

Table of Contents
Introduction	
 ..	
 1	

System	
 Architecture	
 ..	
 1	

The	
 Semantic	
 Web	
 and	
 Scholarly	
 Metadata	
 ...	
 2	

Server Infrastructure	
 ...	
 3	

Crawler Code	
 ..	
 4	

Design Principles	
 ..	
 4	

Results	
 ..	
 5	

Citation Extraction	
 ..	
 6	

Web Applications in Drupal	
 ..	
 6	

Features	
 ..	
 6	

Concluding	
 Recommendations	
 ...	
 7	

Appendices	
 ...	
 9	

Appendix A: Drupal Modules	
 ...	
 9	

Appendix B: Automated Tests	
 ..	
 9	

Section 1: Unit Tests	
 ...	
 9	

Section 2: Behavioral	
 ...	
 11	

 1	

	

Introduction
Bibliopedia is a research platform designed to crawl scholarly resources including JSTOR, the
Library of Congress, the Arts and Humanities Citation Index, and similar data sources, extract
metadata about works cited, convert that data into a semantic web format, aggregate the different
repositories, then display the results on a wiki-style website for the scholarly community to
verify, add to, annotate, elaborate, and discuss. We envisage Bibliopedia as an open, research-
enabling platform designed to unify the many disparate, closed silos of scholarly information
available today, and that remain difficult and time-consuming to use. Our first goal was to
extract and transform bibliographic data into a linked data format consistent with semantic web
requirements, and to create large volumes of cross-references among texts, making digitized
scholarly texts exponentially more useful to researchers and to machine analysis.

The primary innovations Bibliopedia achieves are: 1) the aggregation and cross-referencing of
separate silos of scholarly data; 2) the transformation of that information into a format consistent
with the semantic web; and 3) crowd-sourcing the verification and elaboration of that data.
Mapping and cross-referencing large-scale, high-volume scholarship also means that unexpected
connections can be found and brought to light, along with less-known original works that might
otherwise remain unread. Moreover, formatting scholarly references for the semantic web will
make this data available to a far broader community and enable unexpected innovations.
Bibliopedia will generate custom bibliographies and visualizations based on search results,
facilitating a wide variety of scholarly inquiry and discovery. Most importantly, Bibliopedia is
designed for ease of use, so as to substantially broaden participation to attract the largest possible
range of humanities scholars as its user base, in particular scholars who do not normally use
digital tools.

The project team for this phase of development consisted of Geraldine Heng (The University of
Texas at Austin), Principal Investigator; Michael Widner (formerly The University of Texas at
Austin, now Stanford University), Technical Director and co-creator; Jason Yandell, co-creator
and Lead Developer; and Ana Boa-Ventura (The University of Texas at Austin), Web Designer.

This paper describes the technologies used, our reasoning in choosing each, and our
recommendations for future projects that could learn from our work. In particular, we focus on
the importance of modular, test-driven design, the benefits of the semantic web, and the
flexibility and power of the Drupal Content Management System (CMS).

System Architecture
The Bibliopedia project consists of four main components: 1) servers to host and run all the
components of the system; 2) custom code to crawl data sources, retrieve article and book data,
transfer the data to the 3) citation extraction engine, and then submit the results to the 4) Drupal-
based web application. The Bibliopedia team successfully created a scalable, data-source
agnostic crawling architecture, adapted the ParsCit citation extraction software, and developed a
web-based application for publishing data in a linked open data format and for tracking the

 2	

	

changes to the data made by the scholarly community. The code has been in stable release for
some time and is available as open source software on Github:
https://github.com/bibliopedia/bibliopedia/tree/master/Development

The Semantic Web and Scholarly Metadata
Coined by Sir Tim Berners-Lee, the semantic web, according to the W3C, has two main reasons
for existence:

It is about common formats for integration and combination of data drawn from diverse
sources, where on the original Web mainly concentrated on the interchange of
documents. It is also about language for recording how the data relates to real world
objects. That allows a person, or a machine, to start off in one database, and then move
through an unending set of databases which are connected not by wires but by being
about the same thing. (http://www.w3.org/2001/sw/)

The semantic web also "provides a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries" ("What is the Semantic Web?", W3C).

The semantic web is transforming the Internet from a collection of pages and data readable only
by humans to one that machines can understand and process. Semantic web technology promises
the ability automatically to determine meaning and then infer connections among different
elements, thereby vastly improving search capabilities, discovery of new information, and the
overall usefulness of the Internet. Just as information accessible only to humans comprises the
great majority of the general Internet, so too is data about scholarly literature locked away in text
that computers cannot process without great difficulty. At best, search engines for repositories
such as JSTOR permit researchers to query author name, journal titles, and keywords, but once a
work is found, the search stops. No connections among works are found precisely because
machines cannot currently read that data. Although Google Scholar attempts to show citations of
articles, its usefulness is highly limited because it does not make clear the relationships among
articles, present very limited metadata about each article (if any), fails to provide for community
elaboration or correction, and includes only works that are publicly available. Yet despite its
limitations, Google Scholar stands as a significant technological advance beyond keyword-based
search engines such as those provided by JSTOR and Project Muse.

As we gain access to more data sources Bibliopedia will, by aggregating data from as many
sources as possible, converting citations into semantic web format, and then cross-referencing an
ever-growing database of scholarly works, be able not only to overcome many of the limitations
of Google Scholar and become a powerful research tool in its own right, but also to make a
valuable contribution to the growing semantic web. Introducing high quality metadata about
humanities scholarship to the semantic web will enable others in the semantic web/linked data
world to process that data in new, unexpected ways that will accrue further benefits to the
scholarly community. For example, the standards underlying the semantic web make data
visualization and automated inferences about relationships trivially easy rather than the complex
problems such tasks currently present. Bibliopedia will, then, through the innovation of placing
metadata about scholarly literature into a linked data format, open up a vast range of possible

 3	

	

future innovations and analyses based on that data, which is currently locked away and readable
only by select humans.

Another virtue of a linked data format is that it will help resolve many of the challenges inherent
in metadata, some will inevitably remain. Rather than attempt to solve this incredibly complex
problem through automation alone, then, Bibliopedia will, in the process of displaying its results
for human consumption, also provide for human feedback in the form of correction and
elaboration. A common disadvantage of fully automated text analysis and data extraction tools
such as Google Books, Google Scholar, and other digital research tools is that their automatic
parsers have errors in their metadata that they do not allow subject matter experts to repair.
Bibliopedia will pursue the goal of unifying that information into an environment that not only
displays the information efficiently, but actively encourages crowd-sourcing metadata on books,
articles, and publications of all kinds. In thus opening data up to revision by the scholarly
community, Bibliopedia can build on the strong work of mature data silos, improve overall data
quality, and provide the academic community at large a continuously evolving research tool.

Thanks to the native support for RDFa, a lightweight semantic web data format, in Drupal 7, we
are able to create and consume linked data in a very straight-forward manner. Drupal allows for
the creation of mappings among its native content formats and the data structures described in
different linked data ontologies. Moreover, Drupal provides a simple interface for importing
other ontologies as needed. We settled upon some of the most widely used data formats: Dublin
Core, Friend of a Friend (FoaF), and the Bibliographic Ontology (BIBO). Drupal allowed us to
blend these ontologies and ensure that all records for journal articles, journals, authors, etc. are
available as linked data.

Server Infrastructure
To ensure reliability and scalability while reducing server administration time, we settled upon
cloud-based servers to host all databases, the website, and the crawler code. The most performant
and cost-efficient providers we found were Linode.com and Amazon Web Services (AWS). Both
Linode and AWS provide web-based dashboards that allow for server administration, backups,
and monitoring. This choice allowed us to bypass the difficulties often encountered when trying
to provision servers from a university’s IT department. Further, the systems administration tasks
(performed by Widner) were reduced to a bare minimum as the companies providing the cloud
servers manage all backups and hardware maintenance.

The citation extraction and web application components of Bibliopedia exist on a Linode.com
Linux server that provides an Apache web server, a MySQL database, PHP, Perl, and other
common components of a LAMP (Linux-Apache-MySQL-PHP) stack. Widner installed and
configured all necessary software. The crawler code runs on a Windows-based server hosted by
Amazon’s Elastic Cloud Compute (EC2) service.

 4	

	

Crawler Code

Design Principles
The crawler code discovers and parses data from various sources including metadata from
JSTOR, citation links from WikiPedia, and MARC records from library sources such as the
Library of Congress. Yandell designed the system to run on free and open source Linux
platforms as well as on commercial platforms. It is modular, extensible and supported by
automated tests. As we gain access to new data sources, the modular design allows them to be
incorporated into the system with ease.

The technical design focused initially on performance, modularity, and interoperability. Yandell
determined that these goals could best be met by developing an automated test suite at the same
time as the project itself. The automated (“unit”) testing framework provided a number of
advantages, discussed below. Other critical design challenges gained priority when it was
discovered that the structure and data JSTOR returned changed as the project progressed. This
discovery increased the design focus on data provenance, the ability to continuously operate in
the face of ever-changing data, and the ability to parse and unify the semantics of the data
crawled by Bibliopedia.

Yandell designed the crawler to ingest data from numerous sources and to interoperate with a
wide variety of technologies from the proprietary to the standards-compliant. The Bibliopedia
crawler parses all data into an internally-standard format and operates on data in that format for
later stages of the process. Yandell also decided that the internally-standard format to rely on
should be one that was accessible by the widest array of tools available, rather than only by this
one crawler. This design led to our choice of semantic web technologies as the basis for the
project. The code retains extracted data (from any sources) in RDF XML files
(http://en.wikipedia.org/wiki/RDF/XML), one of the central, standard technologies of the
semantic web. This design choice means that the data in the system is in a common format and
accessible with standard tools, thereby making it interoperable and comprehensible to a wide
audience even in the earliest stages of the process.

Yandell established the performance of the crawler early in the project. It is capable of running
in parallel on as many processors and network cards as the server running it possesses. Execution
is entirely asynchronous, meaning that the crawler never stops processing due to input/output
(IO) operations like retrieving data from the internet or writing it to disk. So long as there
remains more data to process, the crawler will process it. This approach can reduce processing
time by multiple orders of magnitude by, for example, reducing processing time from hours to
seconds. The asynchronous approach to code, however, was historically quite challenging to
write and even more challenging to maintain over time. Yandell chose to rely on functional
programming techniques that have gained significant prominence in performance-intensive
applications. This proved to be an effective choice as the stated performance characteristics
were achieved with very few lines of code, and that module never had to be revisited in the face
of other changes. These features provide Bibliopedia an architecture that is scalable and
performant and thus can serve as a model for other large-scale infrastructure projects in the
digital humanities. Scaling performance is often a problem for even projects with large teams

 5	

	

and budgets. Bibliopedia thus provides a model for managing these challenges in the initial
phases of design.

Another crucial aspect of the project was the retention of provenance data for every record,
which requires tracking changes to each record back to its source. At a minimum, this requires
tracking the date, time, and source URL for each piece of data. Initially some code was written to
track these changes. However, locking curation into the code and thus outside of the realm of
domain experts is at odds with the goals of the project. The final solution relies on the version
management capabilities offered by the web application aspects of the project which Widner
built using Drupal. This solution duplicates the revision tracking aspects of Wikipedia, thereby
serving the dual goals of deploying standard technologies and methods and of tracking data as it
is processed and transformed.

Results
Leveraging unit tests (and other forms of automated testing) proved useful in a number of ways.
Since a test for the code could be established before the code itself was written, it was possible to
evaluate the strategic value of technical tasks as they were being performed. It was also of vital
importance in identifying correct functioning of the code as well as continued functioning of the
code. For example, automated tests made it possible for our team to discover immediately the
changes to the JSTOR data format and the disappearance of the JSTOR API.

The ability to operate in the face of ever changing data was necessitated by JSTOR’s internal
(and not publicly communicated) technology choices. Soon after the first crawler was developed,
it was discovered that JSTOR stopped adhering to the broadly used Dublin Core metadata
standards. The fact that the data were constantly in flux necessitated numerous refinements to the
JSTOR parser module of the Bibliopedia code. What is more, JSTOR seems to have abandoned
any adherence to Dublin Core, OAI-*, or any other public ontologies as of our latest data
retrieval. By October 2012, the nature and depth of the data changes thus demanded a rewrite of
the JSTOR parsing module.

Yandell’s adherence to a modular programming approach nevertheless minimized the impact to
the project as a whole and to the crawler specifically. This experience suggests that modularity of
code that relies on data from outside sources is not just a nice feature: it is critical to the
completion and continued utility of any project. Such a design philosophy allows us to anticipate
and adapt to dramatic fluctuations in data sources beyond the control of the project.

One solution to issues arising from data instability would be to repeatedly query and catalog data
(i.e., data scraping: http://en.wikipedia.org/wiki/Data_scraping). While this approach effectively
addresses issues related data instability, it may not be legally advisable, particularly in the case
of JSTOR. Many data sources have Terms of Service that explicitly prohibit non-API access
from programs. Moreover, such methods are less reliable than API queries. It is thus critical that
all levels of project leadership pay close attention to data retention policies of all data sources.

 6	

	

Citation Extraction
To extract citation data from plain text resources (such as JSTOR’s Data for Research service)
requires a machine-learning engine trained to recognize bibliographic data in a variety of formats.
Rather than train our own engine (a time-consuming an error-prone process), we used the open
source Perl software ParsCit (http://aye.comp.nus.edu.sg/parsCit/), which powers CiteSeerX, to
identity and extract citations. The source code for ParsCit is available on Github here:
https://github.com/knmnyn/ParsCit. This software provides a web service to which one submits
plain text data and receives back XML files that identify authors, titles, journal names, date,
books, and other relevant bibliographic data. Moreover, its authors trained it on a wide array of
citation formats, including those common to the humanities, and multiple (mostly Western
European) languages. Widner installed and configured ParsCit on the Linode server running the
web application and databases for the project. This aspect of the project demonstrates once again
the benefits of using existing technologies wherever possible. The development of a citation
extraction engine is, itself, a lengthy and difficult process that would have been well beyond the
scope of this project.

Web Applications in Drupal
The web application is responsible for receiving data from the crawler via a web services API,
transforming them for consumption by the semantic web, managing user accounts and access
levels, displaying data, and enabling the scholarly community to edit the machine-generated data.
Widner built the web application using Drupal 7, an open source Content Management System
(CMS), and a large number of third-party modules that extend Drupal’s functionality (see
“Appendix A: Drupal Modules” for a complete list). The final capabilities of the web application
significantly exceed the initial design specifications and include the follow features:

Features
● RESTful API (http://en.wikipedia.org/wiki/Representational_state_transfer) to receive

and expose data; receives data in JSON format
● Transforms data into linked data using Dublin Core (http://dublincore.org/), BIBO

(http://bibliontology.com/), and FoaF (http://www.foaf-project.org/) ontologies
● Provides a SPARQL (http://en.wikipedia.org/wiki/SPARQL) endpoint for linked data

queries
● Consumes linked data from other resources to enrich Bibliopedia-generated data
● Wiki-style editing to allow users to curate metadata; all changes create new versions to

enable a review of the revision history and ensure integrity of data
● Provides social platform for discussion/contextualization of citations
● User account authentication and management
● Access control to content
● Semantic similarity scores among content
● Advanced search capabilities using Apache Solr
● Traffic and activity logging (Drupal logs and Google Analytics)
● Support for saving pages to Zotero libraries

Along with the theming and overall configuration, Widner also designed the content types to
store journal, article, book, and author data, configured the system to transform that data into

 7	

	

linked data (via the RDFx module; http://drupal.org/project/rdfx), and designed the way different
content types refer to others. A concrete example clarifies this process:

The crawler code, after discovering a journal article and extracting citation data, submits the data
to the web application RESTful API in JSON format. The web application maps the different
data elements (author name, article title, etc.) to the appropriate linked data ontologies and
publishes the entry. A journal article entry links to a pages for its author(s) and the journal in
which it was published.

Web application development also demonstrated the difficulty in using Drupal 7 to build a
complicated linked data web service. Although the modules exist, many of them are still under
heavy development and required the use of development rather than production code to meet all
of this project’s needs. These challenges aside, the web application Widner designed exceeds the
goals laid forth in the original project proposal. The full application is available on Github:
https://github.com/mwidner/bibliopedia/tree/rebuild0.2/bibliopedia.org

Moreover, despite the difficulties involved, the functionality Widner designed with Drupal
shows yet again the benefits of using stable, mature open source software. Any one of the
features present in the web application would require years of development were they undertaken
from scratch with custom code. By using Drupal, Widner was thus able to design a complex,
feature-rich application in a relatively short time span. Drupal’s ease of use and widespread
adoption among academic communities, moreover, means that others can implement the
platform Widner designed for use in their own projects.

Concluding Recommendations
The design philosophy and technologies behind Bibliopedia can serve as a model for how digital
humanities and library science tools and infrastructure can make use of linked data, why they
should do so, and how we can take advantage of coding practices (such as test-driven
development and modular architecture) common among software professionals.

Drupal has proven to be a robust, flexible, and feature-rich platform for developing web
applications that are interoperable with other technologies, for publishing and consuming
semantic web data, and for providing a community portal for engagement with that data. Its
ability to work with standard protocols and formats (e.g., XML, linked data, RESTful APIs) also
makes Drupal an excellent choice for a large array of web publishing applications. Further, it
saves a great deal of time and allows projects to develop complex workflows and websites that
far exceed the possibilities of what could be accomplished with custom code in the same
timeframe.

Our experience with cloud-based solutions has been entirely positive. Not only are such servers
cost effective and easy to maintain, but they are also easily scaled to handle any amount of traffic.
Moreover, they eliminate the need for the procurement, housing, and administration of server
hardware, which leaves project members free to focus on software development.

 8	

	

Finally, the adoption of coding practices such as modular design and test-driven development
allowed us to be confident that the different parts of a complex system worked as intended. It
also allowed us to recognize problems with our data sources as soon as they appeared. Perhaps
most importantly, the modular design allows us to extend the project to encompass other data
sources without requiring any major changes to the code or the overall system, thereby making it
adaptable to unforeseen opportunities.

Related to our use of test-driven development is the issue of dealing with unexpected problems.
A significant roadblock appeared near the end of this phase of the project because JSTOR
disabled its Data for Research API near the end of our project phase. The loss of the JSTOR web
service API means that we were unable to crawl their data as planned and will need to turn to
other data sources. While the Bibliopedia system is designed to make such changes possible and
even expected, it will nevertheless require further work to make this data usable. On a brighter
note, JSTOR reports that they are working on a new API, which would allow us to surmount this
challenge. Despite this challenge, the design of the Bibliopedia system means that we able to
discover this change quickly and that we will be able to move to other data sources and other
formats without problems. Indeed, our focus from an early stage on the principles of our design
and the need for flexibility was proven effective in the face of this challenge. Had we, for
instance, written code focused only on the JSTOR API, we would have been left with an
unusable system that required a complete rewrite. Instead, our system remains functional and
adaptable to such challenges, thereby proving the importance of a logical and clear design
philosophy to guide development of large digital humanities projects.

 9	

	

Appendices

Appendix A: Drupal Modules
Below is a list of the non-core Drupal modules used in the Bibliopedia web application. The prevalence of
alpha, beta, release candidates, and developer versions (14 total) indicates the cutting-edge nature of the
application. For all of these instances, stable production releases are either unavailable or possess bugs or
other limitations when used in the ways Bibliopedia requires.

Package Name Type Version

Chaos tool Chaos tools (ctools) suite Module 7.x-1.2
Features Features (features) Module 7.x-1.0
Feeds Feeds (feeds) Module 7.x-2.0-alpha5+56-dev
Feeds Feeds Admin UI (feeds_ui) Module 7.x-2.0-alpha5+56-dev
Fields Entity Reference (entityreference) Module 7.x-1.0-rc3
Fields Link (link) Module 7.x-1.0
Other Backup and Migrate (backup_migrate) Module 7.x-2.4
Other Entity API (entity) Module 7.x-1.0-rc3
Other Job Scheduler (job_scheduler) Module 7.x-2.0-alpha3
Other Libraries (libraries) Module 7.x-2.0
Other Pathauto (pathauto) Module 7.x-1.2
Other Raphaël (raphael) Module 7.x-1.0
Other Semantic Similarity (semantic_similarity) Module 7.x-1.0-alpha1
Other Token (token) Module 7.x-1.3
RDF External RDF Vocabulary Importer (evoc) Module 7.x-2.0-alpha4
RDF RDF UI (rdfui) Module 7.x-2.0-alpha4
RDF RDFx (rdfx) Module 7.x-2.0-alpha4
RDF SPARQL API (sparql) Module 7.x-2.0-alpha4
RDF SPARQL Endpoints Registry (sparql_registry) Module 7.x-2.0-alpha4
RDF SPARQL Views (sparql_views) Module 7.x-2.0-beta1+11-dev
Services Services (services) Module 7.x-3.1+72-dev
Services - servers REST Server (rest_server) Module 7.x-3.1+72-dev
User interface Wysiwyg (wysiwyg) Module 7.x-2.1
Views Views (views) Module 7.x-3.5
Views Views UI (views_ui) Module 7.x-3.5
Other Bibliopedia (bibliopedia) Theme 1.x

Appendix B: Automated Tests

Section 1: Unit Tests
 CitationSemanticExtraction
 CombineJStorAndOpenCalais

 10	

	

 ExploreComposition
 Data.Tests
 SampleDomainFixture
 CanSaveSampleDomainItem
 Jstor
 JstorTests
 CanGetProperlyFormattedXmlFromJstor
 CanPersistJstorTypes
 CanScourMassiveSubject
 CanScourMassiveSubject(10,1005)
 dc_deserializes_into_multiple_attributes
 EscapeQueryWorksProperly
 ExtensionMethodReturnsCitations
 GetCitationsXml
 JstorServiceIsUp
 SearchReturnsResults
 ResourceTests
 ArgumentContainsMultipleResults
 ArgumentContainsSingleResult
 CanLoadResource
 CannedDocumentHasCitations
 JstorCrawl
 ControllerFixture
 SearchBySubjectByAuthorByWork
 MongoConnect
 MongoDB: Connecting
 Can connect
 Can inspect database
 OpenCalais
 BasicConnectionFixture
 CanExtractComplexText
 CanExtractSimpleText
 ParCit.Test
 ParsCitServiceIntegrationTests
 is_result_deserializable_as_json
 is_service_running
 PersistJstorAsTriples
 DublinCoreConverterTests
 CanConvertCannedDcsToRdf
 PublishedWorks.Tests
 DatabaseFunctionality
 Can_CrossReference_Two_Works
 Can_Save_Work
 MappingsAreWorking
 Can_Correctly_Map_Article
 Can_Correctly_Map_Author
 Can_Correctly_Map_BinaryData
 Can_Correctly_Map_Book
 Can_Correctly_Map_DataMinedWork
 Can_Correctly_Map_Journal

 11	

	

 Can_Correctly_Map_JsonData
 Can_Correctly_Map_LibraryIdentifier
 Can_Correctly_Map_MinedData
 Can_Correctly_Map_Publisher
 Can_Correctly_Map_Range
 Can_Correctly_Map_Subject
 Can_Correctly_Map_TextData
 Can_Correctly_Map_Work
 Can_Correctly_Map_WorkDetails
 Can_Correctly_Map_XmlData
 WikiInteraction
 EntityQueueTests
 CanCreateEntityQueue
 CanLocatePersistentQueueByType
 CanPopItem
 CanPushItem
 InteractionTests
 CanConnectToWiki
 RenderTestData

Section 2: Behavioral

Feature: Drupal data
 In order to work with data in Drupal
 As a bot
 I want to be able to perform basic operations

Background:
 Given credentials
 And a connection

Scenario: Create
 When I create a new test node
 Then I can determine that it succeeded
 And I get some data back

Feature: Drupal connection
 In connect to Drupal
 As a bot
 I want to be able to connect
 And I want to be able to perform basic GET on a Node

Scenario: Connect
 Given a connection
 And credentials
 When I can perform a basic get
 Then I get some data back

Scenario: Create a test item
 Given sample data
 And a connection

 12	

	

 Then I can create a new node

